Re: [提問]AESA和APAR的差別,賞金500P
※ 引述《sedgewick (三分熟的鬧鐘)》之銘言:
: 今天來寫相控陣列雷達...
來寫續集啦~~~ 轉眼間四個月就過去了.
------
上次用顏色做比喻, 那算是電磁波傳遞的部份, 沒什麼加減乘除.
今天來往下講深入一點點的 pulse compression.
這屬於訊號處理, 比較適合用聲音做譬喻, 因為背後有數學.
而雷達之所以「雷」, 就是訊號的東西做錯, 探測距離可能剩下 1/10.
硬體相同也沒用, 運作時就是少人家一大截......非常雷. XD
總之, 雷達最大的挑戰是回波一定很弱, 就算探測非匿蹤的目標也是弱.
增強功率當然是一招, 但勝之不武, 而且大家都會.
甚至做到像中科院那樣又大又重, 背滿冷卻劑可能也還是輸美軍一大截.
因為譬如說探測距離只有人家十分之一, 那功率要提高一萬倍才打平.
這就不太妙...
而另一招是增強訊號的獨特性.
回波之所以弱是跟背景的輻射雜訊相比.
但我們可以讓雷達訊號看起來比較特殊, 就可以跟雜訊分離.
至於要讓訊號特殊, 概念上也不難.
譬如我們聽一首歌, 只聽前五六個音, 小星星跟國歌是一樣的, 對吧?
那要分辨到底是國歌還是小星星? 簡單, 把整首歌唱完就好了嘛.
所以雷達指到某個方向, 聽到背景有小星星就知道有威脅.
但是呢, 小星星還不太夠力.
因為真實的狀況有點像你在山谷喊一聲然後聽回音.
小星星回波可能會剩下嗡嗡嗡跟勉強能識別的幾個音符, 聽不到原音重現.
所以我們最好把貝多芬第九號交響曲整個播一遍, 這就更獨特了.
當然這還是會遇上各種損失, 但畢竟有足足一個小時的交響樂可以參考.
這概念很好, 缺點是要播放一個小時......目標都不知道跑哪去了.
所以我們乾脆把演奏快轉, 快轉 3600 倍就只要播一秒, 很讚吧.
這個讓訊號快轉的技巧就叫做 pulse compression.
理論上它包含一首完整的交響樂, 當然你要塞伍佰演唱會也是可以的.
這種 pulse compression 有各種好處.
訊號獨特, 適合各種雷達設計, 抗干擾, 對距離的解析力也高.
甚至能一部份對抗匿蹤, 畢竟飛機是被整個交響樂團的訊號探測過一遍.
只有一個壞處, 訊號處理能力跟不上.
想像一下, 一秒鐘聽完一首歌, 判斷聽到的東西然後寫下來? 會打結吧.
放到電腦上那是一樣的問題, 電路響應跟不上(耳朵鼓膜不夠力).
處理器來不及計算電路響應後剩下的東西(腦袋轉不過來).
計算完的東西來不及輸出到記憶體或是硬碟(寫字不夠快).
每一段都跟不上, 因為這是一組被加速了上千倍的訊號.
它的單位時間內富含資訊量, 所以也說它頻寬非常大.
我們把它加速幾倍, 處理它所需要的頻寬就加幾倍.
我們只看 CPU 的處理能力就好, 拿這個做例子.
一個典型的 pulse compression 所包含的頻寬可能高達 1GHz.
現代 CPU 在重重保護之下的 clock rate 極限也就 5GHz 左右.
而拿 clock rate 去對應頻譜分析也不是 1: 1, 因為有運算跟存取.
這是要計算蠻大的 Fourier transform, 一百萬比一都有可能.
就是說 CPU 硬幹的話, 1,000,000GHz 差不多夠處理這顆雷達. XD
尤其雷達回波的訊號是一直進來的, 做不完就塞車了...
這個五比一百萬處理能力的落差, 挺傻眼的吧.
CPU 以外, memory bus 跟各種 interface 也都有嚴重的限制.
更傷心的是, 這些訊號絕大部份都是垃圾資訊, 因為人家也不是天天繞台.
但處理的方法倒也不難, 它叫做 stretch processing.
本質上就是假設我們監看的目標處於某個位置時, 它回彈的訊號長什麼樣.
這是一個理想的參考訊號, 訊號裡就是上回所提到的「空間色散」效應.
雷達收到的訊號就拿來跟這個參考訊號比比看有多像.
但這個訊號的比較發生在硬體上, 行為就像一個硬體濾波器.
或者更精確一點, 我們說它屬於 analog domain filter.
只要過這個濾波器, 就等於我們聽到貝多芬在某個位置演奏.
但同時, 也因為我們假設了一個想像的位置(通常都在雷達探測極限).
所以這個濾波會導致雷達有一個最短距離, 太近的反而看不到.
因為太近的物體, 這個回波的色散關係會跟假設差太多.
嗯, 如果回波除了理論上的色散, 還要考慮別的變化呢?
譬如那個 F-22 的回波大概就很畸形, 小提琴聽起來變狗啃的之類.
這個我就不知道了, 但要做是一定可以做, 濾波的時候不要濾那麼乾淨.
留一些其他的訊號給後段跑分析... 你看那個 deep mind 就不錯. XD
但這些設計細節, 我想都是機密資料.
然後, 在脈衝雷達的設計因為多半都共用收發天線.
所以它本身就有一個最短距離, 起因於發射的時候沒辦法接收.
用 pulse compression 衍生的最短距離限制就一起考慮進設計, 算賺到.
至於連續波雷達, 它也可以用 pulse compression.
所以連續波說有最短距離也不要太吃驚, 想說「它又不用開關!?」
這多半是因為設計上更注重某個區間的解析力.
所以你看, 雷達技術一堆門檻, 都還沒說到華麗的 AESA. XD
只是把電磁波彈出去而已, 隨便列一列就一堆沒做就不知道的特性.
這一段有很強的運算需求, 做好做壞的射程差幾倍是跑不掉的.
軍用半導體用到先進製程的部份, 要計入雷達解析這個領域.
最後下個結論.
大致上來說, 越好的雷達, pulse 能塞的一定越多.
那所對應的 filter 就越精巧.
這些又不會全部在硬體上實作, 因為後面沒辦法改.
而且如果硬體做死了, 現代科技最厲害的數位訊號處理更地方沒發揮.
這種半軟半硬的系統, 很難用顯微鏡把電路看過一遍就能複製.
------
好, 停在這裡.
雷達的碟子也有很多有趣的事可以說, 但這篇塞不下.
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.230.92.93 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/Military/M.1731327742.A.99E.html
留言