[問題] 平均的最小方差近似

看板 Statistics
作者 saltlake (SaltLake)
時間 2024-08-07 07:44:04
留言 29 ( 0推 0噓 29→ )
一般我們做最小方差近似,就是把(樣本)數據代入模型, 然後根據最小方差的原理,求出模型的參數組,然後就用 這參數組代入模型,去估計數據點以外的反應(或函數)值 。 可是這些參數其實也是隨機變數,所以也該有個機率分 布函數、平均值、和標準差。那如果我們把樣本數據隨機 分成十組,用這十組數據分別求出十組參數組,然後求出 參數值中每一參數的平均值,再用這組參數去估計數據點 以外的反應。這個平均的最小方差函數得到的估計值,會 否「比較好」? -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.36.207.231 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Statistics/M.1722987846.A.717.html

留言

yhliu 參數也是隨機變數?你確定? 08/07 08:19 1F
有本書用最小方差直線解釋 Y = a_0 + a_1*x a_0 和 a_1 是從隨機樣本資料 x 計算來的,所以也帶有隨機性而為隨機變數 該書還給了該直線參數 a_0 和 a_1 期望值、標準偏差、和信心區間的公式
yhliu 統計推論有兩大學派,一個是頻率論學派,一個是貝氏學派。 08/07 08:21 2F
yhliu 當然,除此之外還有其他學派,如費氏學派,但主要還是兩派 08/07 08:22 3F
yhliu 頻率論的觀點認為:群體是固定定,也就是說參數是非隨機的 08/07 08:24 4F
yhliu 只是我們不知道其值,所以藉隨機樣本來猜測,所以評估標準 08/07 08:26 5F
yhliu 是依抽樣機制衡量平均誤差。而貝氏學派認為資料是已知的, 08/07 08:27 6F
yhliu 考慮其隨機性沒必要;參數是未知的,所以用隨機模型來描述. 08/07 08:28 7F
yhliu 當然在頻率論也可以把參數當成隨機的,例如 ANOVA 的隨機效 08/07 08:30 8F
yhliu 果模型,迴歸分析的隨機係數模型,但最終都有未知其值的固 08/07 08:32 9F
yhliu 定參數;而在貝氏分析,多層次貝氏模型的最高階參數也是隨 08/07 08:33 10F
yhliu 機的。在任一模型下,總有個最適推論,這通常都是應用全部 08/07 08:35 11F
yhliu 樣本資料;資料先分組而後綜合分組分析的方法,通常是為了 08/07 08:38 12F
yhliu 特殊目的。例如 Jackknife, bootstrap 是為了估計參數估計 08/07 08:39 13F
yhliu 的誤差;把資料分兩部分一部分用於估計參數值另一部分當測 08/07 08:40 14F
yhliu 試,是為了模型適當性的交叉驗證;把資料按某種標準分組分 08/07 08:42 15F
yhliu 別估計是為了更適當描述資料模型等等。 08/07 08:43 16F
※ 編輯: saltlake (114.36.207.231 臺灣), 08/07/2024 08:56:43
recorriendo 你都看到分布了代進去就知道了吧 08/07 20:59 17F
recorriendo y_hat=β_hat‧x, β_hat ~ N(β,(X^TX)^-1σ^2) 08/07 20:59 18F
recorriendo 所以 var(y_hat)=x^T(X^TX)^-1xσ^2 現在你的X只有 08/07 21:01 19F
recorriendo 原本十分之一 如果X是獨立抽樣且每個column不相關 08/07 21:04 20F
recorriendo 則(X^TX)^-1只有對角線 且十分之一的data就讓每個 08/07 21:07 21F
recorriendo entry大十倍 然後你取平均就只是讓var變回跟原來一樣 08/07 21:08 22F
意思是所有資料都用來反算參數比較好? 如果分群反算參數,以估計參數信心區間,那麼之後把得到的參數平均後再代入 線性模型會比較可靠? 倘若是一般的(非線性)模型呢?
※ 編輯: saltlake (114.36.207.231 臺灣), 08/07/2024 22:39:05
yhliu 模型不確定,例如迴歸函數不確定是線形的,以前做法是增加 08/08 08:10 23F
yhliu 由線項去檢測,或經由散佈圖或殘差圖診斷以了解較適當的迴 08/08 08:12 24F
yhliu 歸函數;現今由於計算能力大幅提高,採用樣條迴歸,局部線 08/08 08:14 25F
yhliu 性,核迴歸等方法建立樣本迴歸函數,但這些方法有個主要缺 08/08 08:16 26F
yhliu 點是外延困難,甚至非公式化。至於模型參數估計誤差之估計 08/08 08:19 27F
yhliu 或參數信賴區間之計算,除公式推導外,較一般性的方法是利 08/08 08:20 28F
yhliu 用 bootstrap 重抽法。 08/08 08:21 29F
關於參數估計誤差或信賴區間的公式推導,目前僅查到最簡單的線性模型者, 請問有哪些書提供其他模型的推導? 或者要找不同的模型堆導,有甚麼關鍵字 有助從學術論文裡面找到?
※ 編輯: saltlake (114.36.207.231 臺灣), 08/08/2024 08:28:15

最新文章

[問題] 多一天假期,妳會怎麼規劃
womentalk cicely150108
2024-11-25 00:15:04
[閒聊] VVizZ去哪了
womentalk luckycheer
2024-11-25 00:04:14
[分享] 疑似染血的被毀BMD-4M
military andyken
2024-11-24 23:45:29
Re: [中學] 求面積
math honor1984
2024-11-24 23:45:27
[耍冷] 12月25行憲紀念日
joke gsp0309099
2024-11-24 23:33:26
[公告] ilanese 禁言60日
cfantasy cuteker
2024-11-24 23:17:25
[閒聊] 躍上巔峰
literature chikong
2024-11-24 23:16:02
[心情] 心理弱點
womentalk freechoice
2024-11-24 23:09:59
[灑花] 中華健兒取得世界冠軍
womentalk abbott821105
2024-11-24 22:53:41
[趣圖] 棒球海報預言
joke jqk2
2024-11-24 22:39:57
[公告] 多人違規懲處
military mmmimi11tw
2024-11-24 22:34:18